Atmel AT24CS16

Atmel

I²C-Compatible (2-wire) Serial EEPROM with a Unique, Factory Programmed 128-bit Serial Number 16-Kbit (2,048 x 8)

PRELIMINARY DATASHEET

Standard Features

- Low-voltage operation
 V_{CC} = 1.7V to 5.5V
- Internally organized as 2,048 x 8 (16Kb)
- I²C-compatible (2-wire) serial interface
- Schmitt Trigger, filtered inputs for noise suppression
- Bidirectional data transfer protocol
- 400kHz (1.7V) and 1MHz (2.5V, 5.0V) compatibility
- Write Protect pin for hardware data protection
 - 16-byte Page Write mode
 - Partial page writes allowed
- Self-timed write cycle (5ms max)
- High-reliability
 - Endurance: 1,000,000 write cycles
 - Data retention: 100 years
- Green package options (Pb/Halide-free/RoHS-compliant)
 8-lead JEDEC SOIC, 8-lead TSSOP, 8-pad UDFN, and 5-lead SOT23
- Die sale options: wafer form and tape and reel available

Enhanced Features in the CS Serial EEPROM Series

- All standard features supported
- 128-bit unique factory-programmed serial number
 - Permanently locked, read-only value
 - Stored in a separate memory area
 - Guaranteed unique across entire CS Series of Serial EEPROMs

1. Description

The Atmel[®] AT24CS16 provides 16,384 bits of Serial Electrically Erasable and Programmable Read-Only Memory (EEPROM) organized as 2,048 words of eight bits each. The device is optimized for use in many industrial and commercial applications where low-power and low-voltage operation are essential. The AT24CS16 is available in space-saving, 8-lead JEDEC SOIC, 8-lead TSSOP, 8-pad UDFN, and 5-lead SOT23 packages and is accessed via a 2-wire serial interface. Additionally, this device supports full operation from 1.7V to 5.5V.

The AT24CS16 provides the additional feature of a factory programmed, guaranteed unique 128-bit serial number, while maintaining all of the traditional features available in the 16Kb Serial EEPROM. The time consuming step of performing and ensuring true serialization of product on a manufacturing line can be removed from the production flow by employing the CS Series Serial EEPROM. The 128-bit serial number is programmed and permanently locked from future writing during the Atmel production process. Further, this 128-bit location does not consume any of the user read/write area of the 16Kb Serial EEPROM. The uniqueness of the serial number is guaranteed across the entire CS Series of Serial EEPROMs, regardless of the size of the memory array or the type of interface protocol. This means that as an application's needs for memory size or interface protocol evolve in future generations, any previously deployed serial number from any Atmel CS Series Serial EEPROM part will remain valid.

2. Pin Descriptions and Pinout

Pin Name	Function
NC	No Connect
SDA	Serial Data
SCL	Serial Clock Input
WP	Write Protect
GND	Ground
V _{CC}	Power Supply

Figure 2-1. Pin Configuration

8-lead SOIC						
1	8					
2	7	WP				
3	6	SCL				
4	5	SDA				
	1 2	1 8 2 7 3 6				

8-lead TSSOP						
NC 🗆	1	8 🗆 V _{CC}				
NC 🗆	2	7 🗆 WP				
NC 🗆	3					
GND 🗌	4	5 🗆 SDA				

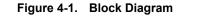
8-pad UDFN						
V_{CC}	8	1	NC			
WP	7	2	NC			
SCL	6	3	NC			

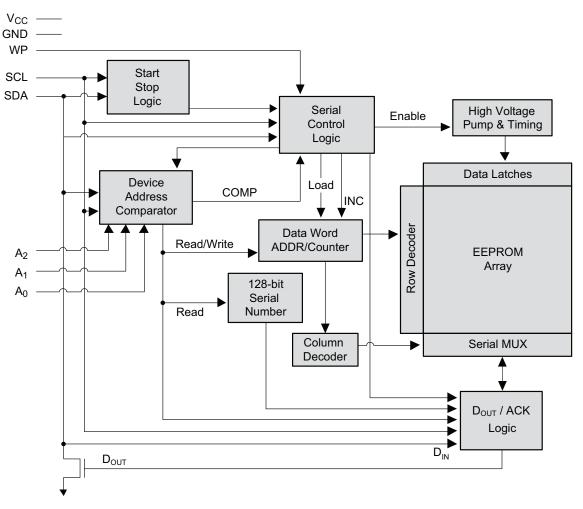
Bottom View

4 GND

SDA 5

5-lead SOT23						
SCL	1	5	WP			
GND	2					
SDA	3	4	Vcc			


Atmel


3. Absolute Maximum Ratings*

Operating Temperature55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on any pin with respect to ground–1.0V to +7.0V
Maximum Operating Voltage 6.25V
DC Output Current 5.0mA

*Notice: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

4. Block Diagram

5. Pin Description

Serial Clock (SCL): The SCL input is used to positive edge clock data into each EEPROM device and negative edge clock data out of each device.

Serial Data (SDA): The SDA pin is bidirectional for serial data transfer. This pin is open-drain driven and may be wire-ORed with any number of other open-drain or open-collector devices.

Device/Page Addresses: The AT24CS16 does not utilize device address pins, which limits the number of devices on a single bus to one.

Write Protect (WP): AT24CS16 has a Write Protect (WP) pin that provides hardware data protection. When the Write Protect pin is connected to ground (GND), normal Read/Write operations to the full array are possible. When the Write Protect pin is connected to V_{CC} , all Write operations to the memory are inhibited but Read operations are still possible. This operation is summarized in Table 5-1 below.

Table 5-1. Write Protect

WP Pin	Part of the Array Protected
Status	AT24CS16
At V _{CC}	Full Array
At GND	Normal Read/Write Operations

6. Memory Organization

Atmel AT24CS16, 16K Serial EEPROM: Internally organized with 128 pages of 16 bytes each, the 16K requires an 11-bit data word address for random word addressing.

Table 6-1. Pin Capacitance⁽¹⁾

Applicable over recommended operating range from T_A = 25°C, f = 1.0MHz, V_{CC} = 5.5V

Symbol	Test Condition	Max	Units	Conditions
C _{I/O}	Input/Output Capacitance (SDA)	8	pF	V _{I/O} = 0V
C _{IN}	Input Capacitance (A ₀ , A ₁ , A ₂ , SCL)	6	pF	V _{IN} = 0V

Note: 1. This parameter is characterized and is not 100% tested.

Table 6-2. DC Characteristics

Applicable over recommended operating range from: $T_{AI} = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 1.7V$ to 5.5V (unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Units
V _{CC}	Supply Voltage		1.7		5.5	V
I _{CC1}	Supply Current V_{CC} = 5.0V	Read at 400kHz		0.4	1.0	mA
I _{CC2}	Supply Current V_{CC} = 5.0V	Write at 400kHz		2.0	3.0	mA
I _{SB1}	Standby Current V _{CC} = $1.7V$	V_{IN} = V_{CC} or V_{SS}			1.0	μA
I _{SB2}	Standby Current V_{CC} = 5.5V	V_{IN} = V_{CC} or V_{SS}				μA
I _{LI}	Input Leakage Current	V_{IN} = V_{CC} or V_{SS}		0.10	3.0	μA
I _{LO}	Output Leakage Current	V_{OUT} = V_{CC} or V_{SS}		0.05	3.0	μA
V _{IL}	Input Low Level ⁽¹⁾		-0.6		V _{CC} x 0.3	V
V _{IH}	Input High Level ⁽¹⁾		V _{CC} x 0.7		V _{CC} + 0.5	V
V _{OL1}	Output Low Level V _{CC} = 1.7V	I _{OL} = 0.15mA			0.2	V
V _{OL2}	Output Low Level V_{CC} = 3.0V	I _{OL} = 2.1mA			0.4	V

Note: 1. V_{IL} min and V_{IH} max are reference only and are not tested.

Table 6-3. AC Characteristics

Applicable over recommended operating range from $T_{AI} = -40^{\circ}$ C to +85°C, $V_{CC} = 1.7$ V to 5.5V, CL = 1TTL Gate and 100pF (unless otherwise noted)

		1.7V		2.5V,	5.0V	
Symbol	Parameter	Min	Max	Min	Max	Units
f _{SCL}	Clock Frequency, SCL		400		1000	kHz
t _{LOW}	Clock Pulse Width Low	1.2		0.4		μs
t _{HIGH}	Clock Pulse Width High	0.6		0.4		μs
t _l	Noise Suppression Time		100		50	ns
t _{AA}	Clock Low to Data Out Valid	0.1	0.9	0.05	0.55	μs
t _{BUF}	Time the bus must be free before a new transmission can start	1.3		0.5		μs
t _{HD.STA}	Start Hold Time	0.6		0.25		μs
t _{SU.STA}	Start Setup Time	0.6		0.25		μs
t _{HD.DAT}	Data In Hold Time	0		0		μs
t _{SU.DAT}	Data In Setup Time	100		100		ns
t _R	Inputs Rise Time ⁽¹⁾		0.3		0.3	μs
t _F	Inputs Fall Time ⁽¹⁾		300		100	ns
t _{su.sto}	Stop Setup Time	0.6		0.25		μs
t _{DH}	Data Out Hold Time	50		50		ns
t _{WR}	Write Cycle Time		5		5	ms
Endurance ⁽¹⁾	3.3V, +25°C, Page Mode		1,000,000 Write C			Write Cycles

Note: 1. This parameter is ensured by characterization only.

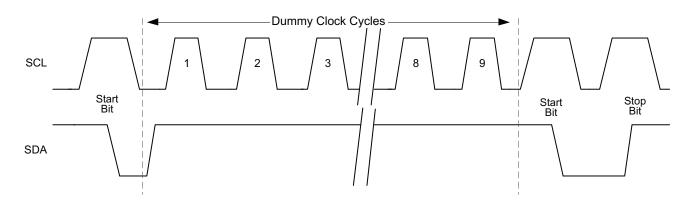
7. Device Operation

Clock and Data Transitions: The SDA pin is normally pulled high with an external device. Data on the SDA pin may change only during SCL low time periods (see Figure 7-4 on page 9). Data changes during SCL high periods will indicate a Start or Stop condition as defined below.

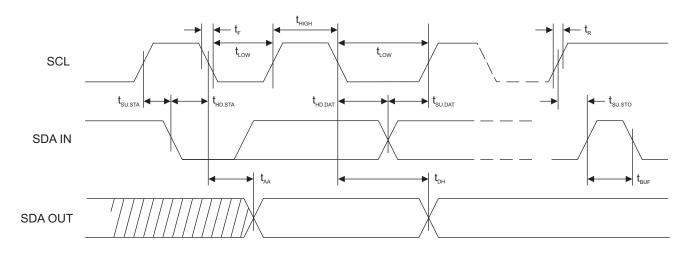
Start Condition: A high-to-low transition of SDA with SCL high is a Start condition which must precede any other command (see Figure 7-5 on page 9).

Stop Condition: A low-to-high transition of SDA with SCL high is a Stop condition. After a read sequence, the Stop command will place the EEPROM in a standby power mode (see Figure 7-5 on page 9).

Acknowledge: All addresses and data words are serially transmitted to and from the EEPROM in 8-bit words. The EEPROM sends a zero to acknowledge that it has received each word. This happens during the ninth clock cycle (see Figure 7-6 on page 9).

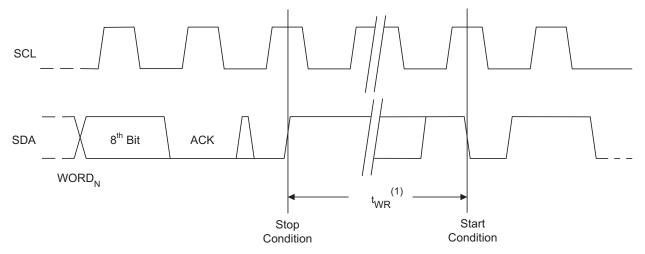

Standby Mode: The AT24CS16 features a low-power standby mode which is enabled upon power-up as well as after the receipt of the Stop bit and the completion of any internal operations.

2-wire Software Reset: After an interruption in protocol, power loss, or system reset, any 2-wire part can be reset by following these steps:

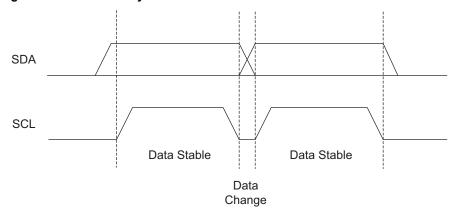

- 1. Create a start bit condition.
- 2. Clock nine cycles.
- 3. Create another start bit followed by stop bit condition as shown in Figure 7-1.

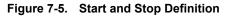
The device is ready for next communication after above steps have been completed.

Figure 7-1. Software reset


Figure 7-2. Bus Timing

SCL: Serial Clock, SDA: Serial Data I/O


Figure 7-3. Write Cycle Timing


SCL: Serial Clock, SDA: Serial Data I/O

Note: 1. The write cycle time t_{WR} is the time from a valid Stop condition of a write sequence to the end of the internal clear/write cycle.

Figure 7-4. Data Validity

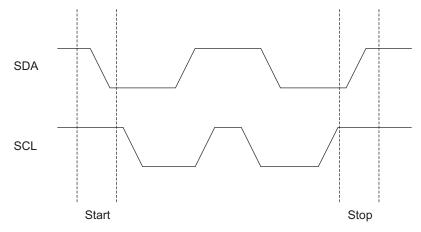
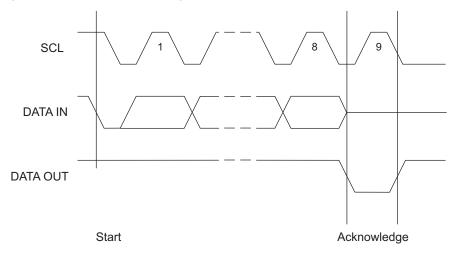



Figure 7-6. Output Acknowledge

8. Device Addressing

Standard EEPROM Access: The 16K EEPROM device requires an 8-bit device address word following a Start condition to enable the chip for a read or write operation.

The device address word consists of a mandatory `1010' (Ah) sequence for the first four most significant bits as shown in Figure 10-1 on page 12. This is common to all Serial EEPROM devices.

The next three bits are used for memory page addressing and are the most significant bits of the data word address which follows.

The eighth bit of the device address is the Read/Write operation select bit. A Read operation is initiated if this bit is high, and a Write operation is initiated if this bit is low.

Upon a valid compare of the device address, the EEPROM will output a zero. If a compare is not successfully made, the chip will return to a standby state.

Serial Number Access: The AT24CS16 utilizes a separate memory block containing a factory programmed 128-bit serial number. Access to this memory location is obtained by beginning the device address word with a `1011' (Bh) sequence.

Due to the size of the serial number, the next three bits of the device address must be set to zero to gain access to the serial number.

The eighth bit of the device address needs be set to a one to read the Serial Number. A zero in this bit position, other than during a dummy write sequence to set the address pointer, will result in a unknown data read from the part. Writing or altering the 128-bit serial number is not possible.

Further specific protocol is needed to read the serial number from of the device. See Read Operations on page 11 for more details on accessing the special feature.

9. Write Operations

Byte Write: A Byte Write operation requires an 8-bit data word address following the device address word and acknowledgment. Upon receipt of this address, the EEPROM will again respond with a zero and then clock in the first 8-bit data word. Following receipt of the 8-bit data word, the EEPROM will output a zero and the addressing device, such as a microcontroller, must terminate the Write sequence with a Stop condition. At this time the EEPROM enters an internally timed write cycle, t_{WR} , to the nonvolatile memory. All inputs are disabled during this write cycle and the EEPROM will not respond until the Write is complete (see Figure 10-2 on page 12).

Page Write: The 16K EEPROM are capable of an 16-byte Page Write. A Page Write is initiated in the same way as a Byte Write, but the microcontroller does not send a Stop condition after the first data word is clocked in. Instead, after the EEPROM acknowledges receipt of the first data word, the microcontroller can transmit up to 15 data words. The EEPROM will respond with a zero after each data word received. The microcontroller must terminate the Page Write sequence with a Stop condition (see Figure 10-3 on page 12).

The data word address lower four bits are internally incremented following the receipt of each data word. The higher data word address bits are not incremented, retaining the memory page row location. When the internally generated word address reaches the page boundary, the subsequent byte loaded will be placed at the beginning of the same page. If more than 16 data words are transmitted to the EEPROM, the data word address will roll-over and previously loaded data will be overwritten.

Acknowledge Polling: Once the internally timed write cycle has started and the EEPROM inputs are disabled, acknowledge polling can be initiated. This involves sending a Start condition followed by the device address word. The Read/Write bit is representative of the operation desired. Only if the internal write cycle has completed will the EEPROM respond with a zero allowing the next Read or Write sequence to begin.

10. Read Operations

Read operations are initiated in the same way as Write operations with the exception that the Read/Write select bit in the device address word is set to one. There are four read operations:

- Current Address Read
- Random Address Read
- Sequential Read
- Serial Number Read

Current Address Read: The internal data word address counter maintains the last address accessed during the last Read or Write operation, incremented by one. This address stays valid between operations as long as the chip power is maintained. The address roll-over during read is from the last byte of the last memory page to the first byte of the first page. The address roll-over during write is from the last byte of the current page to the first byte of the same page.

Once the device address with the Read/Write select bit set to one is clocked in and acknowledged by the EEPROM, the current address data word is serially clocked out. The microcontroller does not respond with an zero but does generate a following Stop condition (see Figure 10-4 on page 12).

Random Read: A Random Read requires a dummy byte write sequence to load in the data word address. Once the device address word and data word address are clocked in and acknowledged by the EEPROM, the microcontroller must generate another Start condition. The microcontroller now initiates a Current Address Read by sending a device address with the Read/Write select bit high. The EEPROM acknowledges the device address and serially clocks out the data word. The microcontroller does not respond with a zero but does generate a following Stop condition (see Figure 10-5 on page 13).

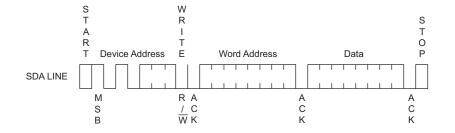
Sequential Read: Sequential Reads are initiated by either a Current Address Read or a Random Address Read. After the microcontroller receives a data word, it responds with an acknowledge. As long as the EEPROM receives an acknowledge, it will continue to increment the data word address and serially clock out sequential data words. When the memory address limit is reached, the data word address will roll-over and the Sequential Read will continue. The Sequential Read operation is terminated when the microcontroller does not respond with a zero but does generate a following Stop condition (see Figure 10-6 on page 13).

Serial Number Read: Reading the serial number is similar to the sequential read sequence but requires use of the device address seen in Figure 10-1 on page 12, a dummy write, and the use of specific word address.

Note: The entire 128-bit value must be read from the starting address of the serial number block to guarantee a unique number.

Since the address pointer of the device is shared between the regular EEPROM array and the serial number block, a dummy write sequence, as part of a Random Read or Sequential Read protocol, should be performed to ensure the address pointer is set to zero. A Current Address Read of the serial number block is supported but if the previous operation was to the EEPROM array, the address pointer will retain the last location accessed, incremented by one. Reading the serial number from a location other than the first address of the block will not result in a unique serial number.

Additionally, the word address must begin with a `10' sequence regardless of the intended address. If a word address other than `10' is used, then the device will output undefined data.


Example: If the application desires to read the first byte of the serial number, the word address input would need to be 80h.

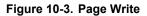

When the end of the 128-bit serial number is reached (16 bytes of data), the data word address will roll-over back to the beginning of the 128-bit serial number. The Serial Number Read operation is terminated when the microcontroller does not respond with an zero (ACK) and instead issues a Stop condition (see Figure 10-7 on page 13).

Figure 10-1. Device Address

Density	Access Area	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
16K	EEPROM	1	0	1	0	P2	P1	P0	R/W
	Serial Number	1	0	1	1	0	0	0	1
		MSB							LSB

Figure 10-2. Byte Write

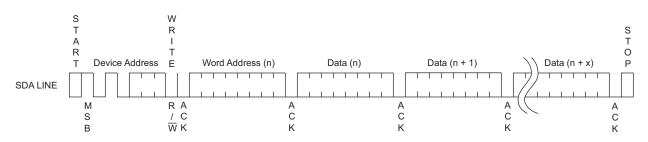
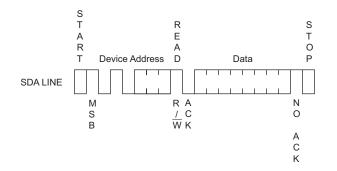
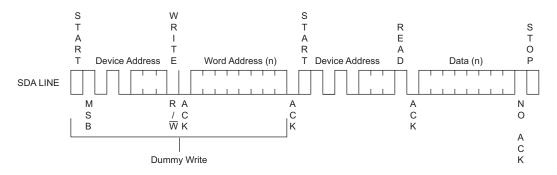




Figure 10-4. Current Address Read

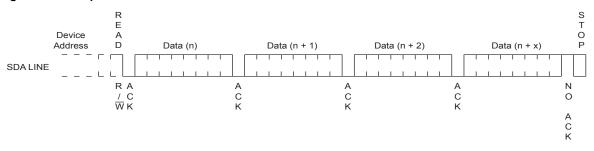
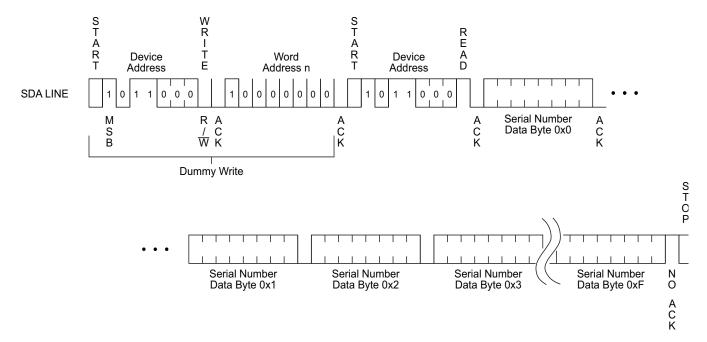
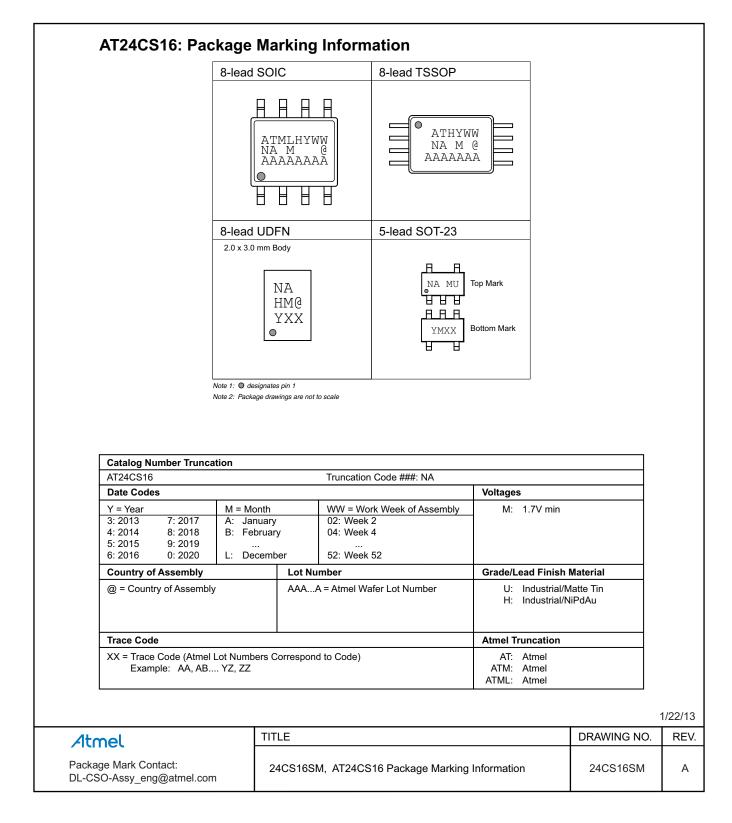
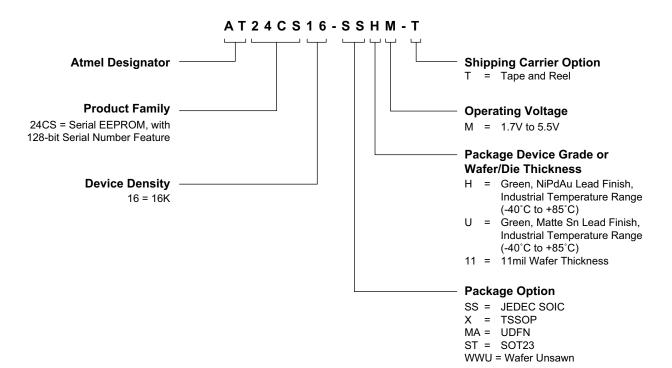




Figure 10-7. Serial Number Read


Atmel

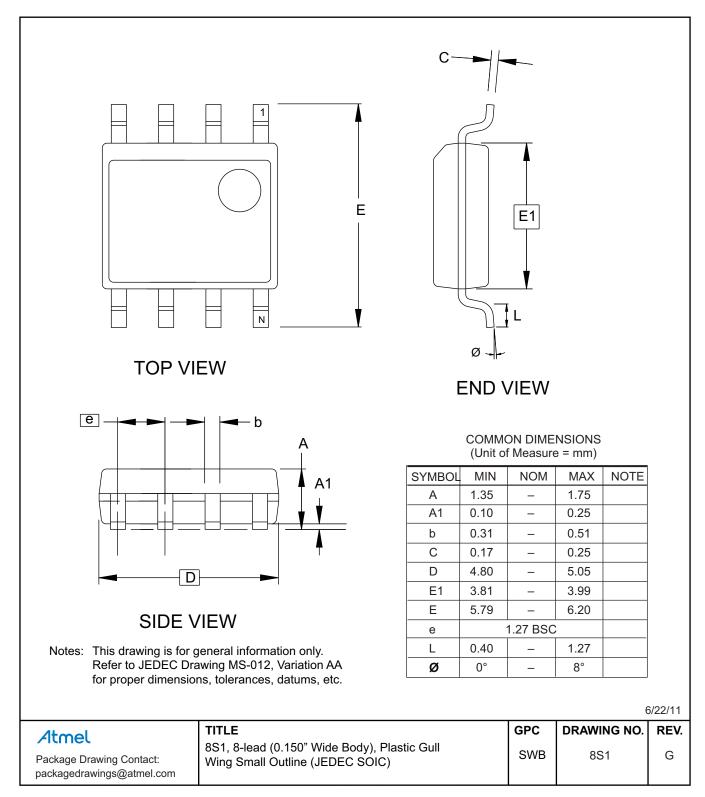
11. Part Markings

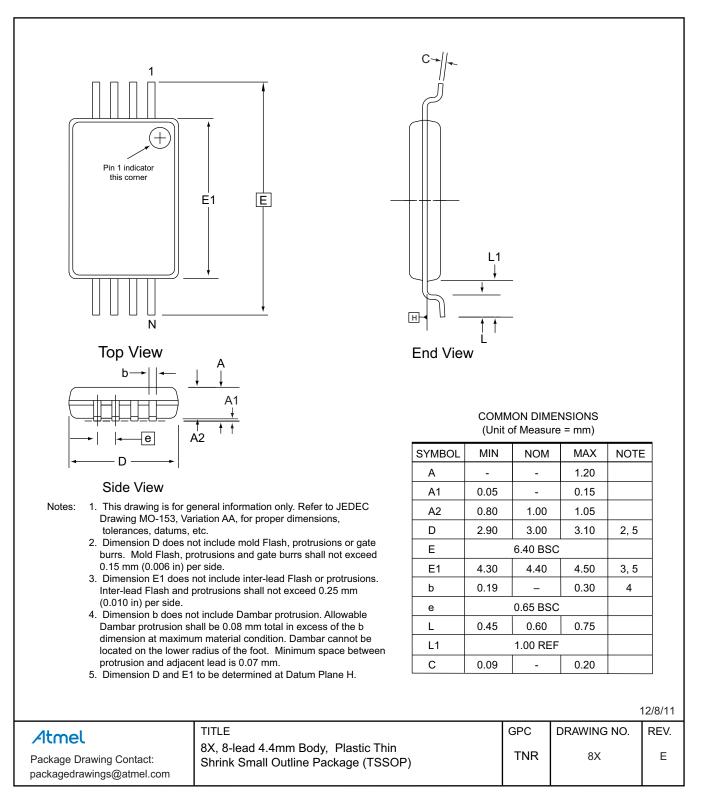
12. Ordering Code Detail

13. Ordering Information

13.1 Atmel AT24CS16 Ordering Information

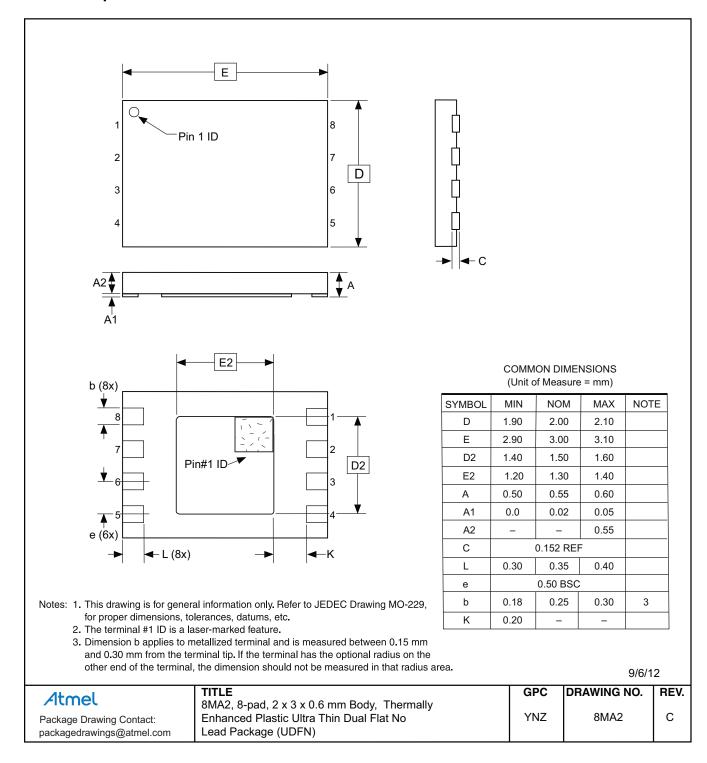
Additional package types that are not listed may be available. Please contact Atmel for more details.

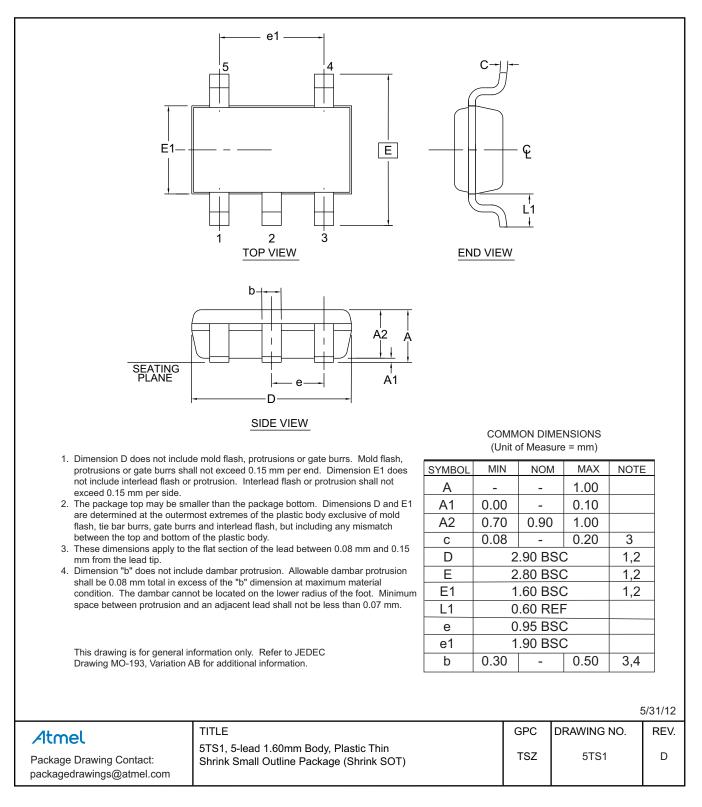

Atmel Ordering Code ⁽¹⁾	Package	Lead Finish	Voltage	Operation Range		
AT24CS16-SSHM-T ⁽²⁾	8S1					
AT24CS16-XHM-T ⁽²⁾	8X	NiPdAu (Lead-free/Halogen-free)				
AT24CS16-MAHM-T ⁽²⁾	8MA2		1.7V to 5.5V	Industrial Temperature (–40°C to 85°C)		
AT24CS16-STUM-T ⁽²⁾	5TS1	Matte Tin (Lead-free/Halogen-free)				
AT24CS16-WWU11M ⁽³⁾	Wafer Sale					


- Notes: 1. Consistent with the general semiconductor market trend, Atmel will supply devices with either gold or copper bond wires to increase manufacturing flexibility and to ensure a long-term continuity of supply. There is no difference in product quality, reliability, or performance between the two variations.
 - 2. T = Tape and reel
 - SOIC = 4K units per reel
 - TSSOP, UDFN, and SOT23 = 5K units per reel
 - 3. For Wafer sales, please contact Atmel Sales.

Package Type			
8S1	8-lead, 0.150" wide, Plastic Gull Wing Small Outline (JEDEC SOIC)		
8X	8-lead, 4.4mm body, Plastic Thin Shrink Small Outline (TSSOP)		
8MA2	8-pad, 2.00mm x 3.00mm body, 0.50mm pitch, Dual No Lead (UDFN)		
5TS1	5-lead, 2.90mm x 1.60mm body, Plastic Thin Shrink Small Outline (SOT23)		

14. Packaging Information


14.1 8S1 — 8-lead JEDEC SOIC



Atmel

14.3 8MA2 — 8-pad UDFN

14.4 5TS1 — 5-lead SOT23

Atmel

15. Revision History

Doc. Rev.	Date	Comments
8859A	02/2013	Initial document release.

Atmel Enabling Unlimited Possibilities[®]

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 487.2600 | www.atmel.com

© 2013 Atmel Corporation. All rights reserved. / Rev.: Atmel-8859A-SEEPROM-AT24CS16-Datasheet-022013

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, outhorized, or warranted for use as components in applications intended to support or sustain life.